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SUMMARY

A least-squares finite element method, based on the velocity-pressure-vorticity for-

mulation, is developed for solving steady incompressible Navier-Stokes problems. This

method leads to a minimization problem rather than to a saddle-point problem by the clas-

sic mixed method, and can thus accommodate equal-order interpolations. This method

has no parameter to tune. The associated algebraic system is symmetric, and positive

definite. Numerical results for the cavity flow at Reynolds number up to 10,000 and the

backward-facing step flow at Reynolds number up to 900 are presented.

1. INTRODUCTION

During the past decades various finite element methods for incompressible viscous flows

have been developed. Extensive results can be found in the literature. 1-6 Most of these

finite element methods are based on the velocity-pressure formulation because of its sim-

pler boundary conditions and easier extension to three-dimensions. Three methods are

commonly used to solve the velocity-pressure equations. They are the Galerkin mixed

method, the penalty method and the segregated method.

In the Galerkin mixed method, different elements have to be used to interpolate

the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babu_ka-Brezzi(LBB)

condition for the existence of the solution. 7's Although for two-dimensional problems quite

a few convergent pairs of velocity and pressure elements have been developed, most of

these combinations employ basis functions that are not convenient to implement. For

three dimensional problems, this difficulty becomes more severe and only rather elaborate

constructions can pass the LBB test. Another difficulty is that the matrix associated with

the system of linear equations is both non-symmetric due to the convection terms in the

Navier-Stokes equations and non-positive-definite owing to the uncoupled nature of the

incompressibility constraint. Therefore, direct Gaussian elimination rather than iterative

techniques has been considered the only viable method for solving the system. But, for

three-dimensional problems, the computer resources required by a direct method become

prohibitively large.

*Work funded by Space Act Agreement C99066G.
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In the penalty method, the pressure is pre-eliminated by penalizing the continuity

equation. Involving only velocities, a considerable saving in computing time and computer

memory is achieved. However, in many engineering applications, the pressure may be the

most important design parameter, but the pressure recovered by using the perturbed con-

servation of m&qs equation exhibits oscillations due to the ill-conditioned pressure matrix.

Another disadvantage is the penalty parameter, whichfor small values causes loss of accu-

racy and for too large values sometimes prevents convergence to the solution. Furthermore,

because of the ill-condition due to the smallness of the parameter, the linear system can

not be solved by iterative techniques. Thus one can not use the penalty method to solve

large-scale problems.

The segregated method _'1°'il adopts a well-known SIMPLE-type finite difference al-

gorithm. Since the computation of velocity and pressure are decoupled by iteration, signifi-

cant computational efficiency can be achieved in computer storage and time. However, due

to the lack of correct pressure boundary conditions for the pressure correction equation,

the computed pressure maybe inaccurate. A comparative study of the segregated method

vs the Galerkin mixed method can be found in Reference 12.

In order to overcome these difficulties, we have been developing a least-squares finite

element method(LSFEM) 13'14'15 based on the first-order velocity-pressure-vorticity for-

mulation. Any good solver of Navier-Stokes equations should at least be able to solve the

Stokes equations. For the Stokes equations, this method leads to a minimization problem

rather than to a saddle-point problem, and the choice of combination of elements is thus

not subject to the LBB condition. The numerical experiments exhibit the optimal rate of

convergence for all variables with equal-order interpolations. A theoretical error analysis

supports this observation, is Furthermore, there are neither added parameters nor artifi-

cial dissipation nor upwinding. The resulting matrix is symmetric and positive definite.

Therefore, simple iterative techniques can be employed to solve large-scale problems on

vector and parallel computers.

In this paper, we describe the LSFEM which has all the above mentioned advantages

for solving the incompressible Navier-Stokes problems. The numerical procedure used in

the present study is based on a general framework of the LSFEM for systems of first-

order partial differential equations. 1_ For the sake of completeness, we disscus the LSFEM

for first-order systems in Section 2. Section 3 provides a derivation of the first-order

velocity-pressure-vorticity formulation for the Navier-Stokes equations. In Section 4 the

performance of the LSFEM is illustrated by the computational results for high Reynolds



number cavity flows and backward-facing step flows. Conclusions are given in Section 5.

2. LSFEM FOR FIRST-ORDER SYSTEMS

The LSFEM of interest here is based on minimizing the residual in differential equa-

tions in L 2 norm. The LSFEM requires that the trial functions be smooth enough to lie

in the domain of the differential operator. For example, for second-order differential equa-

tions, the LSFEM must use C 1 elements(plate or shell elements) which are not convenient

from the computational point of view. In order to use simple C o elements, we transform

the original differential equations into an equivalent system of first-order differential equa-

tions by introducing auxiliary unknowns. This can be realized for almost any governing

equation in mathematical physics.

We consider the boundary-value problem:

Lu_= f in fl (1)

B__: g on r (2)

where L is a first-order partial differential operator:

na at*

= + (3)
i=i

fl C _,td is a bounded domain with a piecewise smooth boundary r, nd= 2 or 3 represents

the number of space dimensions, u_r = (ul, u2, ...ur,.,) is a vector of m unknown functions of

x__,Ai and A are m × m matrices which depend on x__,f is a given vector-valued function, B

is a boundary operator, and g is a given vector-valued function on the boundary. Without

loss of generality we assume that g_ is a zero vector.

Here, we do not discuss the existence and uniqueness of the solution to (1), because

these depend on the structure and properties of L and B, and the vector f. In the following

discussion, it is assumed that the problem (1) has a unique solution. We indicate that if

there is a solution to (1), then the following least-squares method produces an approximate
solution.

Throughout this paper, L 2 (fl) denotes the space of square-integrable functions defined

on fl with inner product

(u, v) =/_ uvdn u, v _ L2(n) (4)
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and norm

llullo_-
We define the Sobolev space as:

. _ L:(n) (s)

H'(n)-{_CL2(n);a_e L=(n),Vlal_<1} (6)

where a -- (r#l, a2, ..., and) E _qnd and ]a[ = a I -}- a 2 -Jr- ... nt- and , and define their associated

norms by

I1"11_- _ Ila%ll_ (7)

lal_<l

For the vector-valued function u_ with m components, we have the product spaces

L_(n)= (L_(n))_" (8)

_H'(n)= (H'(n))" (9)

and the corresponding norm
F_

• II_-IIg= _ II,,jllo= (lO)
y=l

m

I1_-I1_= _ II"Jll,= (11)
i=1

Considering the boundary condition of the boundary-value problem, we also define

the function space

_S= {u_ E (H'(II))m;Bu_ -- 0 on r} (12)

Let us suppose that f E L 2 and L : _S --. __L2. For an arbitrary trial function u_ E S, we

define the residual function R__= L_u - L" The LSFEM is based on minimizing the residual

function in a least-squares sense.

We construct the least-squares functional

z(_)= II1,_- ZIIo== (L_- ,#',_- ,f) (13)

Taking variation of I with respect to u_, and setting 61 = 0 and 6u_ = w__, lead to the

least-squares weak statement: Find u_E S such that

("_-,"_-)= ("_-,D vwc s (14)
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In the approximate analysis, we first discretize the domain as a union of finite elements

and then introduce an appropriate finite element basis. Let ATedenote the number of nodes

for one element and _bi denote the element shape functions. If equal-order interpolations

are employed, that is, for all unknown variables the same finite element is used, we can

write the expansion

N. U2

u y

(15)

where (ul,u2,...,um)j are the nodal values at the jth node, and h denotes the mesh

parameter.

Introducing the finite element approximation defined in (15) into the weak statement

(14), we have the linear algebraic equations

KU---- F (16)

where the U is the global vector of nodal values. The global matrix K is assembled from

the element matrices

Ke =/_ (L_)I,L_2,...,L_Ne)T (L_I,L_2, ...,L_Ne)dfi
¢

(17)

in which fie C fi is the domain of the eth element, T denotes the transpose, and the vector

F is assembled from the element vectors

Fe = /f_ (L_I,L_2,...,L_N°)T f dfi
(18)

in which

L_j = _j,zA1 +  j,vA2 +  j,.As + g,jA (19)

REMARK 1 If L is an elliptic operator, then we have the inequality

(Lw__,Lu_) < MoIl_lllllu_l[1, (Lu_,Lu_) > o4[u_H2 (20)

for arbitrary u_,w__E S, where M0 and c_ are positive constants. That is, the bilinear form

(Lw, Lu__)is continuous and coercive. Following the classic argument(see,e.g., Reference 18,

p.26-28), if the exact solution is smooth enough, we can easily obtain the error estimate

II lll= I1 -  hlll MoC hk (21)
_X



where the constant C is independent of the mesh size h, and k denotes the order of complete

polynomial of shape functions. Furthermore, the L 2 error estimate can be obtained by the

Aubin-Nitsche trick(see, e.g., Reference 19, p.88). These facts indicate that all variables

with equal-order interpolations converge at the optimal rate.

REMARK 2. The matrix K is symmetric and positive definite. Therefore, iterative

techniques, such as the preconditioned element-by-element conjugate gradient method, 2°'21

can be employed to solve the resulting algebraic equations. This property means that large-

scale problems can be effectively solved on vector and parallel computers.

REMARK 3. The computational labor of iterative methods depends on the condition

number of the matrix K. If a second-order elliptic problem is solved numerically using the

classic Galerkin method on a uniform finite element mesh of size h, the resulting matrix

has condition number O(h-2). If the same problem is recast as a first-order system, and

then treated by the LSFEM, the condition number of matrix K remains as O(h-2). 22'23

That is, the LSFEM described here does not degrade the condition number.

REMARK 4. It is important to point out that there is no weighting parameter in our

LSFEM. Each equation in the first-order system is equally treated. That is, the LSFEM

is robust (with no parameter to tune ). People thought that in least-squares methods

one could put a large weighting factor on one equation in the system to emphasize the

importance of this equation over others. 24 Numerical experiments and theoretical analysis

show that this idea is incorrect. The weighting can not change the minimum point(zero)

of the least-squares functional, and thus can not change the solution except the condition

number of the resulting matrix. 2s Usually, the governing equations are nondimensionalized

by using the reference quantities of the problem. The nondimensionalization or scaling is

equivalent to weighting the residuals in the least-squares functional. By the same argument,

the scaling with different choice of the reference quantities will not change the LSFEM

solution.

REMARK 5 The formulation of LSFEM is simple and systematic. Once a LSFEM based

on a first-order system is coded, adaptation of the program to other problems is simply

carried out by modifying the subroutines associated with the coefficient matrices AI, A2,

A3 and A and the vector function f. In this way, one may develop a general-purpose

program.

3. VELOCITY-PRESSURE-VORTICITY FORMULATION

Consider the incompressible Navier-Stokes problem: Find the velocity u_ = (ul, u2, u3)

and the pressure p such that

V.u=O in 12 (22a)



1

u_. Vu__- _ Au_ + Vp- f__ in n (22b)

Here all wriables are nondimensionalized, f = (fz, fv) is the body force, and Re denotes

the Reynolds number, defined as
UL

Re = m
u

where L a reference length, U a reference velocity and u the kinematic viscosity. Of

course, the boundary conditions should be supplemented to complete the definition of the

boundary value problem.

Since the momentum equations(22b) involve second-order derivatives of velocity, the

direct application of least-squares method requires the use of inconvenient C 1 elements and

produces matrices with large condition number. 22 In order to use the LSFEM described

in Section 2, we must consider the governing equations of incompressible flows in the

form of first-order systems. There are several ways to do this. For example, one may

write the Navier-Stokes equations in velocity-pressure-stress formulation, which is useful

for viscoelasticity and non-Newtonian flow problems, but this formulation has too many

variables. Instead, we introduce the vorticity __ = V x u, and rewrite the incompressible

Navier-Stokes equations in the following first-order quasi-linear velocity-pressure_vorticity

formulation:

V.u=0

---1V _u . Vu__+ Re x o_ + Vp = f in fl (23)

_-Vxu_=0

We shall consider the two-dimensional problem only:

au av

=0

au au _p 1 ao_ = ?z
+

Ov Ov Op 1 Ow

u -_-_x+ v -_-_y+ ay Re Oz = /v

au av
w+ -0

ay az

in n (24)

We can write(24) in the general form of a first-order system(I), in which

( oo (ilOO)0 1 0 0 0
Ax = u 0 1 A2 =--R--_ v 1 0

--1 0 0 0 0 0
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A= f= u= (25)
0 0 0 - - p

0 0 0

Since the system is of first-order, the boundary conditions are thus very simple, and

do not involve the derivatives of unknowns. Let (FI, F2, Fs, F4, Fs) denote the sides of F.

The unit outward normal vector to F is denoted by _n, and the tangential vector to F by t.

We may consider, for instance, the following boundary conditions:

(a) u=0,v=0on the F1 (the wall)

(b) u = constant, v -- 0,w = 0 on F_ (the far field)

(c) u = given,v -- 0,w -- given on F3 (the well developed inflow or outflow)

(d) u,, - O,w = O,p - constant on F4 (the free surface)

(e)., = 0,p=co. ta.t on r5 (the outflow)

The quasi-linear problem(25) can be solved by using any linearization method, for

example, the successive substitution or the Newton's scheme.

4. NUMERICAL RESULTS

The LSFEM described in the previous sections has been tested by solving the driven

cavity flow and the backward-facing step flow. In this study, a simple successive substitu-

tion scheme is used to obtain the solution. The velocity field at the previous step is used to

calculate the coefficient matrices AI, Az and A. This paper is concerned with the validity

of the LSFEM only, thus a Gaussian elimination is used to solve the algebraic system. The

solutions are updated using an under-relaxation method given as

uu_"= a_u" -{- (1 - a)_u n-1 (26)

where a is the under-relaxation number, the superscript n denotes the substitution level,

and * the updated solution. The difference between the results of two consecutive steps is

defined as
fi2az

e= I<'- <'+II
i=I,...jNB

where i denotes the node, N, is the total number of nodes. The substitution continues

until the difference e becomes less than the tolerance 10 -4.

Driven Cavity Flow

The definition of driven cavity fow is as usual. 50 x 50 nonuniform bilinear elements

are used and the mesh distribution is shown in Figure 1. The smallest element size has

8



h -- 0.002 at the four coners. One point Gaussian quadrature is used to evaluate the

element matrices. The boundary conditions are: u -- v -- 0 everywhere except on the

toplid, where u - 1,v -- 0; p = 0 at the center of the bottom; _ = 0 at the two lower

corners; _ = -500 at the two upper corners. The Reynolds numbers considered are

100,400,1000, 3200, 5000, 7500, and 10000. In each case, u - v = 0 is taken as an initial

guess, that is, the first step is the solution of the corresponding Stokes problem. No under-

relaxation is necessary for Re < 3200, t_ - 0.8 is used for Re > 3200. The required number

of iterations are 8, 12, 14, 22, 28, 40, and 67, respectively.

The computed results(streamlines, pressure contours, vorticity contours, and velocity

vectors) for Re = 1000,5000 and 10000 axe shown in Figure 2,3, and 4. Overall, the

streamlines and the vorticity contours compare rather well with those of Ghia et a/25

except for one region: the lower right eddy at Re --- 10000. The size and shape of this

small eddy compare more favorably with those of Gresho tt a/. 2e The pressure contours

compare well with those of Kim 27 and Sohn et a/. 12 The horizontal velocity profiles at

z = 0.5 compare well with those of Ghia et a/25 in Figure 5.

Backward-facing Step

This example is chosen to compare computational results with the experimental data

of Almaly eta/. 2s The step has a height of 0.0049m. The small channel, upstream of this

step, has a height of 0.0052m. the inlet boundary is located at 3.5 step heights upstream

of this step. The total length behind the backward-facing step is 45 step heights. A total

of 2550 nonuniform bilinear elements(6 × 15 for the smaller channel and 82 × 30 for the

larger channel) are used with fine meshes near the step. One point Gaussian quadrature
is used to evaluate the element matrices.

A parabolic velocity profile with the center line velocity of 1.0m/s and a corresponding

vorticity are imposed at the inlet, v = 0, p = 0 are prescribed at the exit boundary, w = 0

is given at the lower step corner. The Reynolds number Re = U__p_Dis based on the hydraulic
V

diameter(D = 0.0104m) of the inlet channel and the average velocity(v = 0.6667m/s). The

various Reynolds numbers are obtained by varying the kinematic viscosity v.

u = v = 0 is used as an initial guess for Re = 100, the converged solution for Re = 100

is used as an initial guess for Re = 200, and so on. The required numbers of substitutions

are 13,19,29,39,42,51,73,79, and 84 for the Reynolds number of 100 through 900 with the

incremental of 100, respectively. Under-relaxation is not used.

The computed results(streamlines, pressure contours, and vorticity contours) for Re =

400,500 and 800 are shown in Figure 6,7 and 8. The computed pressure is adjusted by

a constant such that p = 0 at the lower step corner. The reattachment length of the

recirculating zone behind the step and the location of detachment and reattachment of

another recirculating zone near the upper wall are compared with experimental data in

9



Figure 9, where zl is the reattachment location of the primary vortex, z4 is the separation

location of the secondary vortex at the top wall, z5 is the reattachment location of the

secondary vortex, and the distance is measured from the expansion step.

5. CONCLUSIONS

A new finite element method for incompressible Navier-Stokes problems is developed.

This method is simple, robust and reliable. This method represents a particular application

of a unified least-squares finite element method for first-order partial differential equations

in computational physics. Further developments are under way for solving 3D problems

and time-dependent problems. Theoretical investigation is also needed.
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Figure 1. Finite element mesh (50x50 bilinear elements) for the cavity flow
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Figure 2. Computed results for cavity flow at Re=1000
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Figure 3. Computed resultsfor cavityflow at Re=5000
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(a) Streamline

(b) Pressure

(c) Vorticky
(d} Velocity

Figure 4. Computed results for cavity flow at Re=10000
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Figure 5. Horizontal velocity profile for cavity flow -- present, A Ghia et a/25
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Figure 6. Computed Results for Backward-Facing Step Flow at Re=400.
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Figure 7. Computed Results for backward-Facing Step Flow at Re=500.
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(a) Streamline

(b) Pressure

(c)Vorticlty

Figure 8. Computed Results for Backward-Facing Step Flow at Re=800

19



t.,..

t_
",4

I,.,,..

t_
t_

fM

(D

d"

¢kl

./

t/

/
/

/

oXs/h

j zl/h

x4/h

Figure 9.

I O0 200 I00 _00 500 600 700 800 900 1000

REYNOL OS NUMBER

Reattachment length vs Reynolds number for backward-facing step flow

p present, ZX, o, o: Exp't zl/h, z4/h, xs/h, respectively

2O





NationalAeronautics and
Space Administration

Report Documentation Page

1. Report No, NASA TM-i02385 [
ICOMP-89-28 I

4. Title and Subtitle

2, Government Accession No. 3. Recipienrs Catalog No.

5. Report Date

A Least-Squares Finite Element Method for Incompressible Navier-
Stokes Problems

7, Author(s)

Bo-nan Jiang

October 1989

6, Performing Organization Code

8, Performing Organization Report No.

E-5124

10. Work Unit No.

505-62-2 l

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

15. Supplementary Notes

Bo-nan Jiang, Institute for Computational Mechanics in Propulsion, Lewis Research Center, Cleveland, Ohio

44135 (work funded by Space Act Agreement C99066G). Space Act Monitor: Louis A. Povinelli.

16. Abstract

A least-squares finite element method, based on the velocity-pressure-vorticity formulation, is developed for

solving steady incompressible Navier-Stokes problems. This method leads to a minimization problem rather than

to a saddle-point problem by the classic mixed method, and can thus accommodate equal-order interpolations.
This method has no parameter to tune. The associated algebraic system is symmetric, and positive definite.

Numerical results for the cavity flow at Reynolds number up to 10,000 and the backward-facing step flow at

Reynolds number up to 900 are presented.

17. Key Words (Suggested by Author(s))

Finite element; Least squares; Navier-Stokes equations;

First-order system; Velocity-pressure-vorticity; Equal-

order interpulations

Distribution Statement

Unclassified - Unlimited

Subject Category 64

2_. Security Classif, (of this page) r| 21. NO of pages19. Security Classif. (of this report)

Unclassified Unclassified 20
/ /

NASA rOaM 162s oct a6 *For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price"

A03


